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Scalar and pseudoscalar QCD susceptibilities in nuclei
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Abstract. We study the staticscalar and pseudoscalar susceptibilities of QCD in the nuclear medium. We
show that they become much closer than in the vacuum at normal nuclear matter density, a strong signal
of the partial restoration of chiral symmetry.
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– 12.40.Yx Hadron mass models and calculations – 13.75.Cs Nucleon-nucleon interactions (including
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We focus in this paper on an aspect of chiral symmetry
which has received little attention: the effect of the partial
restoration on the susceptibilities of QCD, related to the
fluctuations of the quark densities. In the phase of broken
symmetry, there exist two susceptibilities. One along the
spontaneous magnetization axis, and the second one along
the perpendicular direction.

In QCD, the scalar susceptibility represents the modi-
fication of the order parameter, i.e., of the quark conden-
sate, to a small perturbation of the parameter responsible
for the explicit breaking of the symmetry, which is the
quark mass:

χS =
∂〈q̄q〉
∂mq

= 2
∫

dt′ dr′GR(r = 0, t = 0, r′, t′), (1)

where GR is the retarded quark scalar correlator:

GR

(
r, t, r′, t′

)
= Θ(t− t′)

〈 − i
[
q̄q(r, t), q̄q

(
r′, t′

)]〉
. (2)

The susceptibility represents space- and time-integrated
correlators.

In the linear σ model the symmetry-breaking part of
the Lagrangian is proportional to the σ field:

LχSB = cσ (3)

with c = fπm
2
π. This quantity plays the role of the

symmetry-breaking Lagrangian of QCD:

LQCD
χSB = −2mq q̄q, (4)
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which entails the following correspondence between the
QCD and effective theory correlators:

〈
q̄q(x)q̄q(0)

〉
〈
q̄q

〉2

vac

=

〈
σ(x)σ(0)

〉
f2

π

, (5)

where 〈qq〉vac is the vacuum value of the condensate. The
fluctuations of the quark density are thus carried by the σ
field, the chiral partner of the pion. The in-medium prop-
agation of the σ in the energy domain near the two-pion
threshold, has been the object of several investigations
(see, e.g., [1–3]). Here we will focus on the low-energy re-
gion, below the particle-hole excitation energies.

The scalar susceptibility is given by

χS = 2
〈q̄q〉2vac
f2

π

∫ ∞

0

dω
(

2
πω

)
ImDSS(q = 0, ω)

= 2
〈q̄q〉2vac
f2

π

ReDSS(q = 0, ω = 0), (6)

where DSS(q, ω) is the Fourier transform of the scalar cor-
relator:

DSS(q, ω) =
∫

dtdreiωte−iq·r

×〈 − iT
(
σ(r, t)− 〈σ〉, σ(0)− 〈σ〉)〉. (7)

In a simple picture where the sharp σ mass is reduced in
the nuclear medium, i.e. mσ replaced by some dropped
value, m∗

σ [2], the static correlator is exp(−m∗
σr)/r. As

m∗
σ goes to zero at full chiral symmetry restoration, the

fluctuations acquire an infinite range as for fluids near the
critical temperature. In the work of Hatsuda et al. [2] the σ
mass modification arises from the tadpole term. Here, we
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include the polarization of the nuclear medium by the σ
field. The lowest excitations are the nuclear ones, where a
nucleon-hole state is excited. At higher energy the σ trans-
forms into two pions. When at least one pion is a nuclear
one this process also produces an in-medium modification
of the σ propagator. At present we have only included the
nuclear states. The coupling of the σ to the nucleon-hole
excitations modifies the scalar field propagator as follows:

DSS = D0
S

(
1 +D0

Sg
2
SΠSS

)
. (8)

Here D0
S = 1/(q2 − m2

σ) is the bare σ propagator, ΠSS

is the full scalar NN−1 polarization propagator and the
quantity gS is the σNN coupling constant. In the linear σ
model, as well as in quantum hadrodynamics, this quan-
tity has a value close to 10. Using this value, for a first es-
timate, and the free Fermi gas expression for the nucleon-
hole propagator: ReΠ0(q = 0, ω = 0) � −2MNkF/π

2 we
get

χS � χS,vac

(
1 +

2g2
SMNkF

π2m2
σ

)
. (9)

Notice that the scalar susceptibility is, as the quark con-
densate, negative. This first-order correction leads to a
large modification of the σ propagator at normal density:
DS ∼ 12D0

S at ρ = ρ0 indicating a sizable in-medium in-
crease of the scalar susceptibility. This effect can be seen
as arising from an in-medium decrease of the σ mass. This
mass is a screening mass and not the energy of the pole
of the σ propagator at zero momentum.

Now, quantitatively, we have to know the full
ΠSS(q = 0, ω = 0), which is a pure nuclear physics prob-
lem, on which experimental information can be obtained.
Indeed, at low densities where non-relativistic effects are
unimportant the scalar polarization propagator ΠSS is
identical to the one for the ordinary density. It is then
linked to the incompressibility factor K of nuclear mat-
ter, the magnitude of which is known experimentally

ΠSS(q = 0, ω = 0)
g2
S

= −9ρS

K
, (10)

where ρS is the nucleon scalar density. With the cur-
rently suggested value, K = 230MeV, which is practi-
cally the free Fermi gas one: K = 3k2

F/MN , the quantity
ΠSS(q = 0, ω = 0) also has the free Fermi gas value, which
should validate the previous estimate.

However we have to discuss also in more detail the
value of the σNN coupling constant entering the renor-
malization factor in eq. (8), which may depend on the den-
sity. This is the case in the quark-meson coupling model
(QMC) of Guichon [4] which has a relevance for this prob-
lem. It is an extension of the quantum hadrodynamics
model (QHD), but formulated at the quark level. In QMC
the scalar and vector mesons couple directly to the quarks
inside the nucleons, described by a bag model. The cru-
cial ingredient of the model is the internal structure of the
nucleon which adjusts to the presence of the scalar field.
Under the influence of this attractive field the quark mass
is lowered according to: m∗

q = mq − gq
σ〈σ〉, where gq

σ is the
σ-quark coupling constant. Accordingly, the valence quark

scalar number, which depends on the quark mass, also de-
creases, the quarks becoming more relativistic. This effect
is directly related to the QCD scalar susceptibility of the
bag, χbag

S . Introducing the scalar charge, QS, defined as
the valence quark scalar number:

QS(〈σ〉) =
∫

bag

dr
(〈q̄q(r)〉 − 〈q̄q〉vac

)

= QS(mq) + χbag
S

(
m∗

q −mq

)
= QS(〈σ〉 = 0)− gq

σχ
bag
S 〈σ〉. (11)

Now, the scalar charge acting as the source of the scalar
field, a decrease of the scalar charge amounts to a lowering
of the σNN coupling constant when the mean scalar field,
i.e., the density, increases:

gS(ρ) = gq
σQS(〈σ〉). (12)

In QMC this mechanism is responsible for the saturation
of nuclear matter. The introduction of χbag

S , which is pos-
itive, amounts to an increase of the σ mass:

m∗2
σ (ρ) = m2

σ + (gq
σ)

2χbag
S ρS, (13)

which partly counteracts the decrease due to the mixing
with NN−1 states. Note that the direct contribution of
the bag susceptibility to the nuclear one is by itself small
and effects mostly the mean scalar field. We use the values
of Guichon et al. [5] for the density-dependent scalar cou-
pling constant and also, for consistency, their value of the
incompressibility:K = 280MeV (also compatible with the
experimental allowed range). The enhancement factor of
the scalar susceptibility is χS(ρ0)/χS,vac = 6.2, still quite
a large medium effect.

We now turn to the transverse susceptibility, linked
to the fluctuations of the pseudoscalar quark density. We
define it in such a way that it coincides with the scalar
susceptibility in the restored phase:

χPS = 2
∫

dt′ dr′Θ(t− t′)x

×
〈
− i

[
q̄iγ5

τα
2
q(0), q̄iγ5

τα
2
q(r′t′)

]〉
. (14)

This pseudoscalar susceptibility is related to the correlator
of the divergence of the axial current since

∂µAα
µ(x) = 2mq q̄iγ5

τα
2
q(x). (15)

In the representations where PCAC holds the interpolat-
ing pion field is proportional to the divergence of the axial
current according to

∂µAα
µ(x) = fπm

2
πΦ

α(x). (16)

The pseudoscalar susceptibility χPS is then linked to the
pion propagator, taken at zero momentum and energy:

χPS =
f2

πm
4
π

2m2
q

∫
dt′ dr′Θ(t− t′)

〈 − i
[
Φα(0), Φα(r′t′)

]〉

=
f2

πm
4
π

2m2
q

ReDπ(q = 0, ω = 0). (17)
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Since the factor multiplying the pion propagator can be
written as 2〈q̄q〉2vac/f2

π , this equation is the analog of the
one for the scalar susceptibility, with the pion replacing
the σ. Thus in the linear σ model, where PCAC holds, the
propagators of the two chiral partners, σ and π, govern the
evolutions of the two susceptibilities. In the medium we
denote S(q, ω) the pion self-energy so that

Dπ(q = 0, ω) =
[
ω2 −m2

π − S(q = 0, ω)
]−1

. (18)

The expression of the self-energy depends on the represen-
tation. The one that should enter here is the one which
applies to the PCAC representation. Its expression is not
simple [6]. This complexity is, however, irrelevant for es-
tablishing a link with the condensate evolution. At zero
four-momentum

ReDπ(q = 0, ω = 0) = − 1
m2

π + S(0, 0)
. (19)

On the other hand, the evolution with density of the con-
densate is governed by the nuclear Σ commutator: ΣA/A
per nucleon, according to the exact expression:

〈q̄q(ρ)〉
〈q̄q〉vac = 1− (ΣA/A)ρ

f2
πm

2
π

, (20)

which follows from the very definition of the nuclear Σ
commutator as the expectation value over the nuclear
ground state of the commutator between the axial charge
and its time derivative. In the PCAC representation, the
nuclear Σ commutator also represents the scattering am-
plitude for soft pions on the nuclear medium, T (0, 0) (per
unit volume), with

(ΣA/A)ρ
f2

π

= T (0, 0). (21)

This quantity is related to the pion self-energy, S(q, ρ),
which depends on the density, through

T (0, 0) =
S(0, 0)

1 + S(0, 0)/m2
π

. (22)

In this expression the denominator represents the coherent
rescattering of the soft pion [7], which is needed in order
to make the nuclear Σ commutator independent of the
representation, ref. [6]. The link between the pseudoscalar
susceptibility and the in-medium condensate is established
by writing the condensate from its expression (eq. (20))
as

〈q̄q(ρ)〉
〈q̄q〉vac = 1− T (0, 0)

m2
π

=
1

1 + S(0, 0)/m2
π

. (23)

From the expression of the pseudoscalar susceptibility
(eq. (17)) and using the GOR relation, one finally obtains
the result

χPS =
〈q̄q〉vac
mq

1
1 + S(0, 0)/m2

π

=
〈q̄q(ρ)〉
mq

. (24)

The pseudoscalar susceptibility follows the condensate
evolution, i.e., its magnitude decreases with density, with
a linear dependence in the dilute limit where the relation
(ΣA/A) = ΣN holds. At normal density the susceptibility
has thus decreased by 35%.

Our previous relation (24) between the transverse
(pseudoscalar) susceptibility and the order parameter (the
condensate) can be understood from the magnetic anal-
ogy. The rotational symmetry is intrinsically broken by
a magnetic field H0 which aligns the spontaneous mag-
netization along its direction. The application of a small
transverse field H⊥ rotates the magnetization M by an
angle θ, such that it is now aligned in the direction of the
resulting field H0 +H⊥. The transverse magnetization is
M⊥ = Mθ = M(H⊥/H0) and the transverse susceptibil-
ity is χ⊥ = M⊥/H⊥ = M/H0, which is the analog of our
formula (24).

Our results lead to the conclusion that at normal den-
sity the scalar and pseudoscalar susceptibilities become
much closer than in the vacuum. As in the phase of
restored symmetry they should become degenerate, the
question is if this convergence is a signal of the partial
symmetry restoration. The decrease in magnitude of the
pseudoscalar one is clearly linked to the restoration since
it follows the condensate. As for the scalar one which is
the derivative of the order parameter with respect to the
quark mass its evolution is also linked to the restoration
process, which can be shown explicitly.

We have also explored how the convergence effect
evolves at higher densities. However this extrapolation
does not rely as previously on the experimental data of
the incompressibility. For the scalar susceptibility we have
taken the scalar coupling constant from ref. [5] and we
have assumed that the polarization propagator keeps the
free Fermi-gas expression with the effective nucleon mass
of ref. [5]. The increase of the scalar susceptibility stabi-
lizes or even decreases somewhat due to the fact that the
nucleon reaction to the σ field manifests itself more with
increasing density. However the influence of the two-pion
continuum should also be included, which will be our next
step, before a definite conclusion can be drawn. In sum-
mary we have studied the in-medium modifications of the
two QCD susceptibilities, linked to the fluctuations of the
scalar-isoscalar and the pseudoscalar-isovector quark den-
sities. The first one is linked, through the linear σ model,
to the propagator of the σ-meson, which in the nucleus
mixes with the low-lying scalar-isoscalar nuclear excita-
tions. At normal nuclear density this mixing produces an
increase of the scalar susceptibility by a factor of about
6. This effect does not appear to increase further with
increasing density. As for the pseudoscalar susceptibility,
which is linked to the pion propagator, it follows the evolu-
tion of the condensate, i.e., it decreases with density. The
two combined effects make the scalar and pseudoscalar
susceptibilities appreciably closer, at ρ0, than in the vac-
uum. Their convergence is a clear, and amplified, signal
of chiral symmetry restoration.
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